GEOS 3.14.0dev
LineIntersector.h
1/**********************************************************************
2 *
3 * GEOS - Geometry Engine Open Source
4 * http://geos.osgeo.org
5 *
6 * Copyright (C) 2005-2006 Refractions Research Inc.
7 * Copyright (C) 2001-2002 Vivid Solutions Inc.
8 *
9 * This is free software; you can redistribute and/or modify it under
10 * the terms of the GNU Lesser General Public Licence as published
11 * by the Free Software Foundation.
12 * See the COPYING file for more information.
13 *
14 **********************************************************************
15 *
16 * Last port: algorithm/RobustLineIntersector.java r785 (JTS-1.13+)
17 *
18 **********************************************************************/
19
20#pragma once
21
22#include <geos/export.h>
23#include <geos/algorithm/Intersection.h>
24#include <geos/algorithm/Interpolate.h>
25#include <geos/algorithm/Orientation.h>
26#include <geos/geom/Coordinate.h>
27#include <geos/geom/Envelope.h>
28#include <geos/geom/PrecisionModel.h>
29
30#include <string>
31
32// Forward declarations
33namespace geos {
34namespace geom {
35class PrecisionModel;
36}
37}
38
39namespace geos {
40namespace algorithm { // geos::algorithm
41
53class GEOS_DLL LineIntersector {
54public:
55
74 static double computeEdgeDistance(const geom::CoordinateXY& p, const geom::CoordinateXY& p0, const geom::CoordinateXY& p1);
75
76 static double nonRobustComputeEdgeDistance(const geom::Coordinate& p, const geom::Coordinate& p1,
77 const geom::Coordinate& p2);
78
79 explicit LineIntersector(const geom::PrecisionModel* initialPrecisionModel = nullptr)
80 :
81 precisionModel(initialPrecisionModel),
82 result(0),
83 inputLines(),
84 isProperVar(false)
85 {}
86
87 ~LineIntersector() = default;
88
97 {
98 if(isInteriorIntersection(0)) {
99 return true;
100 }
101 if(isInteriorIntersection(1)) {
102 return true;
103 }
104 return false;
105 };
106
114 bool isInteriorIntersection(std::size_t inputLineIndex)
115 {
116 for(std::size_t i = 0; i < result; ++i) {
117 if(!(intPt[i].equals2D(*inputLines[inputLineIndex][0])
118 || intPt[i].equals2D(*inputLines[inputLineIndex][1]))) {
119 return true;
120 }
121 }
122 return false;
123 };
124
131 void
133 {
134 precisionModel = newPM;
135 }
136
137 enum intersection_type : uint8_t {
139 NO_INTERSECTION = 0,
140
142 POINT_INTERSECTION = 1,
143
145 COLLINEAR_INTERSECTION = 2
146 };
147
149 template<typename C1, typename C2>
150 void computeIntersection(const C1& p1, const C1& p2,
151 const C2& p3, const C2& p4)
152 {
153 inputLines[0][0] = &p1;
154 inputLines[0][1] = &p2;
155 inputLines[1][0] = &p3;
156 inputLines[1][1] = &p4;
157 result = computeIntersect(p1, p2, p3, p4);
158 }
159
161 void computeIntersection(const geom::CoordinateSequence& p, std::size_t p0,
162 const geom::CoordinateSequence& q, std::size_t q0);
163
164 std::string toString() const;
165
171 bool
173 {
174 return result != NO_INTERSECTION;
175 }
176
177
185 const geom::CoordinateXY*
186 getEndpoint(std::size_t segmentIndex, std::size_t ptIndex) const
187 {
188 return inputLines[segmentIndex][ptIndex];
189 }
190
195 size_t
197 {
198 return result;
199 }
200
201
208 const geom::CoordinateXYZM&
209 getIntersection(std::size_t intIndex) const
210 {
211 return intPt[intIndex];
212 }
213
218 static bool isSameSignAndNonZero(double a, double b);
219
230 bool isIntersection(const geom::Coordinate& pt) const
231 {
232 for(std::size_t i = 0; i < result; ++i) {
233 if(intPt[i].equals2D(pt)) {
234 return true;
235 }
236 }
237 return false;
238 };
239
254 bool
255 isProper() const
256 {
257 return hasIntersection() && isProperVar;
258 }
259
270 const geom::Coordinate& getIntersectionAlongSegment(std::size_t segmentIndex, std::size_t intIndex);
271
281 std::size_t getIndexAlongSegment(std::size_t segmentIndex, std::size_t intIndex);
282
292 double getEdgeDistance(std::size_t geomIndex, std::size_t intIndex) const;
293
294private:
295
300 const geom::PrecisionModel* precisionModel;
301
302 std::size_t result;
303
304 const geom::CoordinateXY* inputLines[2][2];
305
310 geom::CoordinateXYZM intPt[2];
311
316 std::size_t intLineIndex[2][2];
317
318 bool isProperVar;
319 //Coordinate &pa;
320 //Coordinate &pb;
321
322 bool
323 isCollinear() const
324 {
325 return result == COLLINEAR_INTERSECTION;
326 }
327
328 template<typename C1, typename C2>
329 uint8_t computeIntersect(const C1& p1, const C1& p2, const C2& q1, const C2& q2)
330 {
331 isProperVar = false;
332
333 // first try a fast test to see if the envelopes of the lines intersect
334 if(!geom::Envelope::intersects(p1, p2, q1, q2)) {
335 return NO_INTERSECTION;
336 }
337
338 // for each endpoint, compute which side of the other segment it lies
339 // if both endpoints lie on the same side of the other segment,
340 // the segments do not intersect
341 int Pq1 = Orientation::index(p1, p2, q1);
342 int Pq2 = Orientation::index(p1, p2, q2);
343
344 if((Pq1 > 0 && Pq2 > 0) || (Pq1 < 0 && Pq2 < 0)) {
345 return NO_INTERSECTION;
346 }
347
348 int Qp1 = Orientation::index(q1, q2, p1);
349 int Qp2 = Orientation::index(q1, q2, p2);
350
351 if((Qp1 > 0 && Qp2 > 0) || (Qp1 < 0 && Qp2 < 0)) {
352 return NO_INTERSECTION;
353 }
354
358 bool collinear = Pq1 == 0 && Pq2 == 0 && Qp1 == 0 && Qp2 == 0;
359 if(collinear) {
360 return computeCollinearIntersection(p1, p2, q1, q2);
361 }
362
363 /*
364 * At this point we know that there is a single intersection point
365 * (since the lines are not collinear).
366 */
367
368 /*
369 * Check if the intersection is an endpoint.
370 * If it is, copy the endpoint as
371 * the intersection point. Copying the point rather than
372 * computing it ensures the point has the exact value,
373 * which is important for robustness. It is sufficient to
374 * simply check for an endpoint which is on the other line,
375 * since at this point we know that the inputLines must
376 * intersect.
377 */
378 geom::CoordinateXYZM p;
379 double z = DoubleNotANumber;
380 double m = DoubleNotANumber;
381
382 if(Pq1 == 0 || Pq2 == 0 || Qp1 == 0 || Qp2 == 0) {
383
384 isProperVar = false;
385
386 /* Check for two equal endpoints.
387 * This is done explicitly rather than by the orientation tests
388 * below in order to improve robustness.
389 *
390 * (A example where the orientation tests fail
391 * to be consistent is:
392 *
393 * LINESTRING ( 19.850257749638203 46.29709338043669,
394 * 20.31970698357233 46.76654261437082 )
395 * and
396 * LINESTRING ( -48.51001596420236 -22.063180333403878,
397 * 19.850257749638203 46.29709338043669 )
398 *
399 * which used to produce the INCORRECT result:
400 * (20.31970698357233, 46.76654261437082, NaN)
401 */
402
403 if (p1.equals2D(q1)) {
404 p = p1;
405 z = Interpolate::zGet(p1, q1);
406 m = Interpolate::mGet(p1, q1);
407 }
408 else if (p1.equals2D(q2)) {
409 p = p1;
410 z = Interpolate::zGet(p1, q2);
411 m = Interpolate::mGet(p1, q2);
412 }
413 else if (p2.equals2D(q1)) {
414 p = p2;
415 z = Interpolate::zGet(p2, q1);
416 m = Interpolate::mGet(p2, q1);
417 }
418 else if (p2.equals2D(q2)) {
419 p = p2;
420 z = Interpolate::zGet(p2, q2);
421 m = Interpolate::mGet(p2, q2);
422 }
423 /*
424 * Now check to see if any endpoint lies on the interior of the other segment.
425 */
426 else if(Pq1 == 0) {
427 p = q1;
428 z = Interpolate::zGetOrInterpolate(q1, p1, p2);
429 m = Interpolate::mGetOrInterpolate(q1, p1, p2);
430 }
431 else if(Pq2 == 0) {
432 p = q2;
433 z = Interpolate::zGetOrInterpolate(q2, p1, p2);
434 m = Interpolate::mGetOrInterpolate(q2, p1, p2);
435 }
436 else if(Qp1 == 0) {
437 p = p1;
438 z = Interpolate::zGetOrInterpolate(p1, q1, q2);
439 m = Interpolate::mGetOrInterpolate(p1, q1, q2);
440 }
441 else if(Qp2 == 0) {
442 p = p2;
443 z = Interpolate::zGetOrInterpolate(p2, q1, q2);
444 m = Interpolate::mGetOrInterpolate(p2, q1, q2);
445 }
446 } else {
447 isProperVar = true;
448 p = intersection(p1, p2, q1, q2);
449 z = Interpolate::zInterpolate(p, p1, p2, q1, q2);
450 m = Interpolate::mInterpolate(p, p1, p2, q1, q2);
451 }
452 intPt[0] = geom::CoordinateXYZM(p.x, p.y, z, m);
453 #if GEOS_DEBUG
454 std::cerr << " POINT_INTERSECTION; intPt[0]:" << intPt[0].toString() << std::endl;
455 #endif // GEOS_DEBUG
456 return POINT_INTERSECTION;
457 }
458
459 bool
460 isEndPoint() const
461 {
462 return hasIntersection() && !isProperVar;
463 }
464
465 void computeIntLineIndex();
466
467 void computeIntLineIndex(std::size_t segmentIndex);
468
469 template<typename C1, typename C2>
470 uint8_t computeCollinearIntersection(const C1& p1, const C1& p2, const C2& q1, const C2& q2)
471 {
472 bool q1inP = geom::Envelope::intersects(p1, p2, q1);
473 bool q2inP = geom::Envelope::intersects(p1, p2, q2);
474 bool p1inQ = geom::Envelope::intersects(q1, q2, p1);
475 bool p2inQ = geom::Envelope::intersects(q1, q2, p2);
476
477 if(q1inP && q2inP) {
478 intPt[0] = zmGetOrInterpolateCopy(q1, p1, p2);
479 intPt[1] = zmGetOrInterpolateCopy(q2, p1, p2);
480 return COLLINEAR_INTERSECTION;
481 }
482 if(p1inQ && p2inQ) {
483 intPt[0] = zmGetOrInterpolateCopy(p1, q1, q2);
484 intPt[1] = zmGetOrInterpolateCopy(p2, q1, q2);
485 return COLLINEAR_INTERSECTION;
486 }
487 if(q1inP && p1inQ) {
488 // if pts are equal Z is chosen arbitrarily
489 intPt[0] = zmGetOrInterpolateCopy(q1, p1, p2);
490 intPt[1] = zmGetOrInterpolateCopy(p1, q1, q2);
491
492 return (q1 == p1) && !q2inP && !p2inQ ? POINT_INTERSECTION : COLLINEAR_INTERSECTION;
493 }
494 if(q1inP && p2inQ) {
495 // if pts are equal Z is chosen arbitrarily
496 intPt[0] = zmGetOrInterpolateCopy(q1, p1, p2);
497 intPt[1] = zmGetOrInterpolateCopy(p2, q1, q2);
498
499 return (q1 == p2) && !q2inP && !p1inQ ? POINT_INTERSECTION : COLLINEAR_INTERSECTION;
500 }
501 if(q2inP && p1inQ) {
502 // if pts are equal Z is chosen arbitrarily
503 intPt[0] = zmGetOrInterpolateCopy(q2, p1, p2);
504 intPt[1] = zmGetOrInterpolateCopy(p1, q1, q2);
505
506 return (q2 == p1) && !q1inP && !p2inQ ? POINT_INTERSECTION : COLLINEAR_INTERSECTION;
507 }
508 if(q2inP && p2inQ) {
509 // if pts are equal Z is chosen arbitrarily
510 intPt[0] = zmGetOrInterpolateCopy(q2, p1, p2);
511 intPt[1] = zmGetOrInterpolateCopy(p2, q1, q2);
512 return (q2 == p2) && !q1inP && !p1inQ ? POINT_INTERSECTION : COLLINEAR_INTERSECTION;
513 }
514 return NO_INTERSECTION;
515 }
516
526 template<typename C1, typename C2>
527 geom::CoordinateXYZM intersection (const C1& p1, const C1& p2, const C2& q1, const C2& q2) const {
528 auto intPtOut = intersectionSafe(p1, p2, q1, q2);
529
530 /*
531 * Due to rounding it can happen that the computed intersection is
532 * outside the envelopes of the input segments. Clearly this
533 * is inconsistent.
534 * This code checks this condition and forces a more reasonable answer
535 *
536 * MD - May 4 2005 - This is still a problem. Here is a failure case:
537 *
538 * LINESTRING (2089426.5233462777 1180182.3877339689,
539 * 2085646.6891757075 1195618.7333999649)
540 * LINESTRING (1889281.8148903656 1997547.0560044837,
541 * 2259977.3672235999 483675.17050843034)
542 * int point = (2097408.2633752143,1144595.8008114607)
543 */
544
545 if(! isInSegmentEnvelopes(intPtOut)) {
546 //intPt = CentralEndpointIntersector::getIntersection(p1, p2, q1, q2);
547 intPtOut = nearestEndpoint(p1, p2, q1, q2);
548 }
549
550 if(precisionModel != nullptr) {
551 precisionModel->makePrecise(intPtOut);
552 }
553
554 return intPtOut;
555 }
556
567 bool isInSegmentEnvelopes(const geom::CoordinateXY& pt) const
568 {
569 geom::Envelope env0(*inputLines[0][0], *inputLines[0][1]);
570 geom::Envelope env1(*inputLines[1][0], *inputLines[1][1]);
571 return env0.contains(pt) && env1.contains(pt);
572 };
573
586 template<typename C1, typename C2>
587 geom::CoordinateXYZM intersectionSafe(const C1& p1, const C1& p2,
588 const C2& q1, const C2& q2) const
589 {
590 geom::CoordinateXYZM ptInt(Intersection::intersection(p1, p2, q1, q2));
591 if (ptInt.isNull()) {
592 const geom::CoordinateXY& nearest = nearestEndpoint(p1, p2, q1, q2);
593#if __cplusplus >= 201703L
594 if constexpr (std::is_same<C1, C2>::value) {
595#else
596 if (std::is_same<C1, C2>::value) {
597#endif
598 ptInt = static_cast<const C1&>(nearest);
599 } else {
600 if (&nearest == static_cast<const geom::CoordinateXY*>(&p1) || &nearest == static_cast<const geom::CoordinateXY*>(&p2)) {
601 ptInt = static_cast<const C1&>(nearest);
602 } else {
603 ptInt = static_cast<const C2&>(nearest);
604 }
605 }
606 }
607 return ptInt;
608 }
609
629 static const geom::CoordinateXY& nearestEndpoint(const geom::CoordinateXY& p1,
630 const geom::CoordinateXY& p2,
631 const geom::CoordinateXY& q1,
632 const geom::CoordinateXY& q2);
633
634
635 template<typename C1, typename C2>
636 static geom::CoordinateXYZM zmGetOrInterpolateCopy(
637 const C1& p,
638 const C2& p1,
639 const C2& p2)
640 {
641 geom::CoordinateXYZM pCopy(p);
642 pCopy.z = Interpolate::zGetOrInterpolate(p, p1, p2);
643 pCopy.m = Interpolate::mGetOrInterpolate(p, p1, p2);
644 return pCopy;
645 }
646
647};
648
649
650} // namespace geos::algorithm
651} // namespace geos
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
A LineIntersector is an algorithm that can both test whether two line segments intersect and compute ...
Definition LineIntersector.h:53
intersection_type
Definition LineIntersector.h:137
void computeIntersection(const geom::CoordinateSequence &p, std::size_t p0, const geom::CoordinateSequence &q, std::size_t q0)
Compute the intersection between two segments, given a sequence and starting index of each.
bool isInteriorIntersection(std::size_t inputLineIndex)
Tests whether either intersection point is an interior point of the specified input segment.
Definition LineIntersector.h:114
const geom::Coordinate & getIntersectionAlongSegment(std::size_t segmentIndex, std::size_t intIndex)
Computes the intIndex'th intersection point in the direction of a specified input line segment.
void setPrecisionModel(const geom::PrecisionModel *newPM)
Definition LineIntersector.h:132
bool isInteriorIntersection()
Tests whether either intersection point is an interior point of one of the input segments.
Definition LineIntersector.h:96
const geom::CoordinateXYZM & getIntersection(std::size_t intIndex) const
Definition LineIntersector.h:209
static double computeEdgeDistance(const geom::CoordinateXY &p, const geom::CoordinateXY &p0, const geom::CoordinateXY &p1)
bool hasIntersection() const
Definition LineIntersector.h:172
static bool isSameSignAndNonZero(double a, double b)
void computeIntersection(const C1 &p1, const C1 &p2, const C2 &p3, const C2 &p4)
Computes the intersection of the lines p1-p2 and p3-p4.
Definition LineIntersector.h:150
const geom::CoordinateXY * getEndpoint(std::size_t segmentIndex, std::size_t ptIndex) const
Definition LineIntersector.h:186
bool isProper() const
Tests whether an intersection is proper.
Definition LineIntersector.h:255
size_t getIntersectionNum() const
Definition LineIntersector.h:196
double getEdgeDistance(std::size_t geomIndex, std::size_t intIndex) const
Computes the "edge distance" of an intersection point along the specified input line segment.
std::size_t getIndexAlongSegment(std::size_t segmentIndex, std::size_t intIndex)
Computes the index of the intIndex'th intersection point in the direction of a specified input line s...
bool isIntersection(const geom::Coordinate &pt) const
Test whether a point is a intersection point of two line segments.
Definition LineIntersector.h:230
The internal representation of a list of coordinates inside a Geometry.
Definition CoordinateSequence.h:56
Coordinate is the lightweight class used to store coordinates.
Definition Coordinate.h:217
Specifies the precision model of the Coordinate in a Geometry.
Definition PrecisionModel.h:88
double makePrecise(double val) const
Rounds a numeric value to the PrecisionModel grid.
Basic namespace for all GEOS functionalities.
Definition geos.h:39