GEOS  3.14.0dev
LineIntersector.h
1 /**********************************************************************
2  *
3  * GEOS - Geometry Engine Open Source
4  * http://geos.osgeo.org
5  *
6  * Copyright (C) 2005-2006 Refractions Research Inc.
7  * Copyright (C) 2001-2002 Vivid Solutions Inc.
8  *
9  * This is free software; you can redistribute and/or modify it under
10  * the terms of the GNU Lesser General Public Licence as published
11  * by the Free Software Foundation.
12  * See the COPYING file for more information.
13  *
14  **********************************************************************
15  *
16  * Last port: algorithm/RobustLineIntersector.java r785 (JTS-1.13+)
17  *
18  **********************************************************************/
19 
20 #pragma once
21 
22 #include <geos/export.h>
23 #include <geos/algorithm/Intersection.h>
24 #include <geos/algorithm/Interpolate.h>
25 #include <geos/algorithm/Orientation.h>
26 #include <geos/geom/Coordinate.h>
27 #include <geos/geom/Envelope.h>
28 #include <geos/geom/PrecisionModel.h>
29 
30 #include <string>
31 
32 // Forward declarations
33 namespace geos {
34 namespace geom {
35 class PrecisionModel;
36 }
37 }
38 
39 namespace geos {
40 namespace algorithm { // geos::algorithm
41 
53 class GEOS_DLL LineIntersector {
54 public:
55 
74  static double computeEdgeDistance(const geom::CoordinateXY& p, const geom::CoordinateXY& p0, const geom::CoordinateXY& p1);
75 
76  static double nonRobustComputeEdgeDistance(const geom::Coordinate& p, const geom::Coordinate& p1,
77  const geom::Coordinate& p2);
78 
79  explicit LineIntersector(const geom::PrecisionModel* initialPrecisionModel = nullptr)
80  :
81  precisionModel(initialPrecisionModel),
82  result(0),
83  inputLines(),
84  isProperVar(false)
85  {}
86 
87  ~LineIntersector() = default;
88 
97  {
98  if(isInteriorIntersection(0)) {
99  return true;
100  }
101  if(isInteriorIntersection(1)) {
102  return true;
103  }
104  return false;
105  };
106 
114  bool isInteriorIntersection(std::size_t inputLineIndex)
115  {
116  for(std::size_t i = 0; i < result; ++i) {
117  if(!(intPt[i].equals2D(*inputLines[inputLineIndex][0])
118  || intPt[i].equals2D(*inputLines[inputLineIndex][1]))) {
119  return true;
120  }
121  }
122  return false;
123  };
124 
131  void
133  {
134  precisionModel = newPM;
135  }
136 
137  enum intersection_type : uint8_t {
139  NO_INTERSECTION = 0,
140 
142  POINT_INTERSECTION = 1,
143 
145  COLLINEAR_INTERSECTION = 2
146  };
147 
149  template<typename C1, typename C2>
150  void computeIntersection(const C1& p1, const C1& p2,
151  const C2& p3, const C2& p4)
152  {
153  inputLines[0][0] = &p1;
154  inputLines[0][1] = &p2;
155  inputLines[1][0] = &p3;
156  inputLines[1][1] = &p4;
157  result = computeIntersect(p1, p2, p3, p4);
158  }
159 
161  void computeIntersection(const geom::CoordinateSequence& p, std::size_t p0,
162  const geom::CoordinateSequence& q, std::size_t q0);
163 
164  std::string toString() const;
165 
171  bool
173  {
174  return result != NO_INTERSECTION;
175  }
176 
177 
185  const geom::CoordinateXY*
186  getEndpoint(std::size_t segmentIndex, std::size_t ptIndex) const
187  {
188  return inputLines[segmentIndex][ptIndex];
189  }
190 
195  size_t
197  {
198  return result;
199  }
200 
201 
208  const geom::CoordinateXYZM&
209  getIntersection(std::size_t intIndex) const
210  {
211  return intPt[intIndex];
212  }
213 
218  static bool isSameSignAndNonZero(double a, double b);
219 
230  bool isIntersection(const geom::Coordinate& pt) const
231  {
232  for(std::size_t i = 0; i < result; ++i) {
233  if(intPt[i].equals2D(pt)) {
234  return true;
235  }
236  }
237  return false;
238  };
239 
254  bool
255  isProper() const
256  {
257  return hasIntersection() && isProperVar;
258  }
259 
270  const geom::Coordinate& getIntersectionAlongSegment(std::size_t segmentIndex, std::size_t intIndex);
271 
281  std::size_t getIndexAlongSegment(std::size_t segmentIndex, std::size_t intIndex);
282 
292  double getEdgeDistance(std::size_t geomIndex, std::size_t intIndex) const;
293 
294 private:
295 
300  const geom::PrecisionModel* precisionModel;
301 
302  std::size_t result;
303 
304  const geom::CoordinateXY* inputLines[2][2];
305 
310  geom::CoordinateXYZM intPt[2];
311 
316  std::size_t intLineIndex[2][2];
317 
318  bool isProperVar;
319  //Coordinate &pa;
320  //Coordinate &pb;
321 
322  bool
323  isCollinear() const
324  {
325  return result == COLLINEAR_INTERSECTION;
326  }
327 
328  template<typename C1, typename C2>
329  uint8_t computeIntersect(const C1& p1, const C1& p2, const C2& q1, const C2& q2)
330  {
331  isProperVar = false;
332 
333  // first try a fast test to see if the envelopes of the lines intersect
334  if(!geom::Envelope::intersects(p1, p2, q1, q2)) {
335  return NO_INTERSECTION;
336  }
337 
338  // for each endpoint, compute which side of the other segment it lies
339  // if both endpoints lie on the same side of the other segment,
340  // the segments do not intersect
341  int Pq1 = Orientation::index(p1, p2, q1);
342  int Pq2 = Orientation::index(p1, p2, q2);
343 
344  if((Pq1 > 0 && Pq2 > 0) || (Pq1 < 0 && Pq2 < 0)) {
345  return NO_INTERSECTION;
346  }
347 
348  int Qp1 = Orientation::index(q1, q2, p1);
349  int Qp2 = Orientation::index(q1, q2, p2);
350 
351  if((Qp1 > 0 && Qp2 > 0) || (Qp1 < 0 && Qp2 < 0)) {
352  return NO_INTERSECTION;
353  }
354 
358  bool collinear = Pq1 == 0 && Pq2 == 0 && Qp1 == 0 && Qp2 == 0;
359  if(collinear) {
360  return computeCollinearIntersection(p1, p2, q1, q2);
361  }
362 
363  /*
364  * At this point we know that there is a single intersection point
365  * (since the lines are not collinear).
366  */
367 
368  /*
369  * Check if the intersection is an endpoint.
370  * If it is, copy the endpoint as
371  * the intersection point. Copying the point rather than
372  * computing it ensures the point has the exact value,
373  * which is important for robustness. It is sufficient to
374  * simply check for an endpoint which is on the other line,
375  * since at this point we know that the inputLines must
376  * intersect.
377  */
378  geom::CoordinateXYZM p;
379  double z = DoubleNotANumber;
380  double m = DoubleNotANumber;
381 
382  if(Pq1 == 0 || Pq2 == 0 || Qp1 == 0 || Qp2 == 0) {
383 
384  isProperVar = false;
385 
386  /* Check for two equal endpoints.
387  * This is done explicitly rather than by the orientation tests
388  * below in order to improve robustness.
389  *
390  * (A example where the orientation tests fail
391  * to be consistent is:
392  *
393  * LINESTRING ( 19.850257749638203 46.29709338043669,
394  * 20.31970698357233 46.76654261437082 )
395  * and
396  * LINESTRING ( -48.51001596420236 -22.063180333403878,
397  * 19.850257749638203 46.29709338043669 )
398  *
399  * which used to produce the INCORRECT result:
400  * (20.31970698357233, 46.76654261437082, NaN)
401  */
402 
403  if (p1.equals2D(q1)) {
404  p = p1;
405  z = Interpolate::zGet(p1, q1);
406  m = Interpolate::mGet(p1, q1);
407  }
408  else if (p1.equals2D(q2)) {
409  p = p1;
410  z = Interpolate::zGet(p1, q2);
411  m = Interpolate::mGet(p1, q2);
412  }
413  else if (p2.equals2D(q1)) {
414  p = p2;
415  z = Interpolate::zGet(p2, q1);
416  m = Interpolate::mGet(p2, q1);
417  }
418  else if (p2.equals2D(q2)) {
419  p = p2;
420  z = Interpolate::zGet(p2, q2);
421  m = Interpolate::mGet(p2, q2);
422  }
423  /*
424  * Now check to see if any endpoint lies on the interior of the other segment.
425  */
426  else if(Pq1 == 0) {
427  p = q1;
428  z = Interpolate::zGetOrInterpolate(q1, p1, p2);
429  m = Interpolate::mGetOrInterpolate(q1, p1, p2);
430  }
431  else if(Pq2 == 0) {
432  p = q2;
433  z = Interpolate::zGetOrInterpolate(q2, p1, p2);
434  m = Interpolate::mGetOrInterpolate(q2, p1, p2);
435  }
436  else if(Qp1 == 0) {
437  p = p1;
438  z = Interpolate::zGetOrInterpolate(p1, q1, q2);
439  m = Interpolate::mGetOrInterpolate(p1, q1, q2);
440  }
441  else if(Qp2 == 0) {
442  p = p2;
443  z = Interpolate::zGetOrInterpolate(p2, q1, q2);
444  m = Interpolate::mGetOrInterpolate(p2, q1, q2);
445  }
446  } else {
447  isProperVar = true;
448  p = intersection(p1, p2, q1, q2);
449  z = Interpolate::zInterpolate(p, p1, p2, q1, q2);
450  m = Interpolate::mInterpolate(p, p1, p2, q1, q2);
451  }
452  intPt[0] = geom::CoordinateXYZM(p.x, p.y, z, m);
453  #if GEOS_DEBUG
454  std::cerr << " POINT_INTERSECTION; intPt[0]:" << intPt[0].toString() << std::endl;
455  #endif // GEOS_DEBUG
456  return POINT_INTERSECTION;
457  }
458 
459  bool
460  isEndPoint() const
461  {
462  return hasIntersection() && !isProperVar;
463  }
464 
465  void computeIntLineIndex();
466 
467  void computeIntLineIndex(std::size_t segmentIndex);
468 
469  template<typename C1, typename C2>
470  uint8_t computeCollinearIntersection(const C1& p1, const C1& p2, const C2& q1, const C2& q2)
471  {
472  bool q1inP = geom::Envelope::intersects(p1, p2, q1);
473  bool q2inP = geom::Envelope::intersects(p1, p2, q2);
474  bool p1inQ = geom::Envelope::intersects(q1, q2, p1);
475  bool p2inQ = geom::Envelope::intersects(q1, q2, p2);
476 
477  if(q1inP && q2inP) {
478  intPt[0] = zmGetOrInterpolateCopy(q1, p1, p2);
479  intPt[1] = zmGetOrInterpolateCopy(q2, p1, p2);
480  return COLLINEAR_INTERSECTION;
481  }
482  if(p1inQ && p2inQ) {
483  intPt[0] = zmGetOrInterpolateCopy(p1, q1, q2);
484  intPt[1] = zmGetOrInterpolateCopy(p2, q1, q2);
485  return COLLINEAR_INTERSECTION;
486  }
487  if(q1inP && p1inQ) {
488  // if pts are equal Z is chosen arbitrarily
489  intPt[0] = zmGetOrInterpolateCopy(q1, p1, p2);
490  intPt[1] = zmGetOrInterpolateCopy(p1, q1, q2);
491 
492  return (q1 == p1) && !q2inP && !p2inQ ? POINT_INTERSECTION : COLLINEAR_INTERSECTION;
493  }
494  if(q1inP && p2inQ) {
495  // if pts are equal Z is chosen arbitrarily
496  intPt[0] = zmGetOrInterpolateCopy(q1, p1, p2);
497  intPt[1] = zmGetOrInterpolateCopy(p2, q1, q2);
498 
499  return (q1 == p2) && !q2inP && !p1inQ ? POINT_INTERSECTION : COLLINEAR_INTERSECTION;
500  }
501  if(q2inP && p1inQ) {
502  // if pts are equal Z is chosen arbitrarily
503  intPt[0] = zmGetOrInterpolateCopy(q2, p1, p2);
504  intPt[1] = zmGetOrInterpolateCopy(p1, q1, q2);
505 
506  return (q2 == p1) && !q1inP && !p2inQ ? POINT_INTERSECTION : COLLINEAR_INTERSECTION;
507  }
508  if(q2inP && p2inQ) {
509  // if pts are equal Z is chosen arbitrarily
510  intPt[0] = zmGetOrInterpolateCopy(q2, p1, p2);
511  intPt[1] = zmGetOrInterpolateCopy(p2, q1, q2);
512  return (q2 == p2) && !q1inP && !p1inQ ? POINT_INTERSECTION : COLLINEAR_INTERSECTION;
513  }
514  return NO_INTERSECTION;
515  }
516 
526  template<typename C1, typename C2>
527  geom::CoordinateXYZM intersection (const C1& p1, const C1& p2, const C2& q1, const C2& q2) const {
528  auto intPtOut = intersectionSafe(p1, p2, q1, q2);
529 
530  /*
531  * Due to rounding it can happen that the computed intersection is
532  * outside the envelopes of the input segments. Clearly this
533  * is inconsistent.
534  * This code checks this condition and forces a more reasonable answer
535  *
536  * MD - May 4 2005 - This is still a problem. Here is a failure case:
537  *
538  * LINESTRING (2089426.5233462777 1180182.3877339689,
539  * 2085646.6891757075 1195618.7333999649)
540  * LINESTRING (1889281.8148903656 1997547.0560044837,
541  * 2259977.3672235999 483675.17050843034)
542  * int point = (2097408.2633752143,1144595.8008114607)
543  */
544 
545  if(! isInSegmentEnvelopes(intPtOut)) {
546  //intPt = CentralEndpointIntersector::getIntersection(p1, p2, q1, q2);
547  intPtOut = nearestEndpoint(p1, p2, q1, q2);
548  }
549 
550  if(precisionModel != nullptr) {
551  precisionModel->makePrecise(intPtOut);
552  }
553 
554  return intPtOut;
555  }
556 
567  bool isInSegmentEnvelopes(const geom::CoordinateXY& pt) const
568  {
569  geom::Envelope env0(*inputLines[0][0], *inputLines[0][1]);
570  geom::Envelope env1(*inputLines[1][0], *inputLines[1][1]);
571  return env0.contains(pt) && env1.contains(pt);
572  };
573 
586  template<typename C1, typename C2>
587  geom::CoordinateXYZM intersectionSafe(const C1& p1, const C1& p2,
588  const C2& q1, const C2& q2) const
589  {
590  geom::CoordinateXYZM ptInt(Intersection::intersection(p1, p2, q1, q2));
591  if (ptInt.isNull()) {
592  const geom::CoordinateXY& nearest = nearestEndpoint(p1, p2, q1, q2);
593 #if __cplusplus >= 201703L
594  if constexpr (std::is_same<C1, C2>::value) {
595 #else
596  if (std::is_same<C1, C2>::value) {
597 #endif
598  ptInt = static_cast<const C1&>(nearest);
599  } else {
600  if (&nearest == static_cast<const geom::CoordinateXY*>(&p1) || &nearest == static_cast<const geom::CoordinateXY*>(&p2)) {
601  ptInt = static_cast<const C1&>(nearest);
602  } else {
603  ptInt = static_cast<const C2&>(nearest);
604  }
605  }
606  }
607  return ptInt;
608  }
609 
629  static const geom::CoordinateXY& nearestEndpoint(const geom::CoordinateXY& p1,
630  const geom::CoordinateXY& p2,
631  const geom::CoordinateXY& q1,
632  const geom::CoordinateXY& q2);
633 
634 
635  template<typename C1, typename C2>
636  static geom::CoordinateXYZM zmGetOrInterpolateCopy(
637  const C1& p,
638  const C2& p1,
639  const C2& p2)
640  {
641  geom::CoordinateXYZM pCopy(p);
642  pCopy.z = Interpolate::zGetOrInterpolate(p, p1, p2);
643  pCopy.m = Interpolate::mGetOrInterpolate(p, p1, p2);
644  return pCopy;
645  }
646 
647 };
648 
649 
650 } // namespace geos::algorithm
651 } // namespace geos
652 
653 
654 
655 
656 
657 
658 
659 
660 
661 
662 
663 
664 
665 
666 
667 
static geom::CoordinateXY intersection(const geom::CoordinateXY &p1, const geom::CoordinateXY &p2, const geom::CoordinateXY &q1, const geom::CoordinateXY &q2)
Computes the intersection point of two lines. If the lines are parallel or collinear this case is det...
A LineIntersector is an algorithm that can both test whether two line segments intersect and compute ...
Definition: LineIntersector.h:53
intersection_type
Definition: LineIntersector.h:137
void computeIntersection(const geom::CoordinateSequence &p, std::size_t p0, const geom::CoordinateSequence &q, std::size_t q0)
Compute the intersection between two segments, given a sequence and starting index of each.
const geom::Coordinate & getIntersectionAlongSegment(std::size_t segmentIndex, std::size_t intIndex)
Computes the intIndex'th intersection point in the direction of a specified input line segment.
bool isInteriorIntersection(std::size_t inputLineIndex)
Tests whether either intersection point is an interior point of the specified input segment.
Definition: LineIntersector.h:114
void setPrecisionModel(const geom::PrecisionModel *newPM)
Definition: LineIntersector.h:132
bool isInteriorIntersection()
Tests whether either intersection point is an interior point of one of the input segments.
Definition: LineIntersector.h:96
static double computeEdgeDistance(const geom::CoordinateXY &p, const geom::CoordinateXY &p0, const geom::CoordinateXY &p1)
bool hasIntersection() const
Definition: LineIntersector.h:172
static bool isSameSignAndNonZero(double a, double b)
void computeIntersection(const C1 &p1, const C1 &p2, const C2 &p3, const C2 &p4)
Computes the intersection of the lines p1-p2 and p3-p4.
Definition: LineIntersector.h:150
bool isProper() const
Tests whether an intersection is proper.
Definition: LineIntersector.h:255
const geom::CoordinateXYZM & getIntersection(std::size_t intIndex) const
Definition: LineIntersector.h:209
size_t getIntersectionNum() const
Definition: LineIntersector.h:196
const geom::CoordinateXY * getEndpoint(std::size_t segmentIndex, std::size_t ptIndex) const
Definition: LineIntersector.h:186
double getEdgeDistance(std::size_t geomIndex, std::size_t intIndex) const
Computes the "edge distance" of an intersection point along the specified input line segment.
std::size_t getIndexAlongSegment(std::size_t segmentIndex, std::size_t intIndex)
Computes the index of the intIndex'th intersection point in the direction of a specified input line s...
bool isIntersection(const geom::Coordinate &pt) const
Test whether a point is a intersection point of two line segments.
Definition: LineIntersector.h:230
static int index(const geom::CoordinateXY &p1, const geom::CoordinateXY &p2, const geom::CoordinateXY &q)
Returns the orientation index of the direction of the point q relative to a directed infinite line sp...
The internal representation of a list of coordinates inside a Geometry.
Definition: CoordinateSequence.h:56
Coordinate is the lightweight class used to store coordinates.
Definition: Coordinate.h:217
static bool intersects(const CoordinateXY &p1, const CoordinateXY &p2, const CoordinateXY &q)
Test the point q to see whether it intersects the Envelope defined by p1-p2.
Specifies the precision model of the Coordinate in a Geometry.
Definition: PrecisionModel.h:88
double makePrecise(double val) const
Rounds a numeric value to the PrecisionModel grid.
Basic namespace for all GEOS functionalities.
Definition: Angle.h:25