|
| CircularArc (const CoordinateXY &q0, const CoordinateXY &q1, const CoordinateXY &q2) |
|
int | orientation () const |
|
const CoordinateXY & | getCenter () const |
| Return the center point of the circle associated with this arc.
|
|
double | getRadius () const |
| Return the radius of the circle associated with this arc.
|
|
bool | isCircle () const |
| Return whether this arc forms a complete circle.
|
|
bool | isLinear () const |
| Returns whether this arc forms a straight line (p0, p1, and p2 are collinear)
|
|
double | getAngle () const |
| Return the inner angle of the sector associated with this arc. More...
|
|
double | getLength () const |
| Return the length of the arc.
|
|
double | getArea () const |
| Return the area enclosed by the arc p0-p1-p2 and the line segment p2-p0.
|
|
double | theta0 () const |
| Return the angle of p0.
|
|
double | theta2 () const |
| Return the angle of p2.
|
|
bool | containsPointOnCircle (const CoordinateXY &q) const |
|
bool | containsPoint (const CoordinateXY &q) |
|
bool | containsAngle (double theta) const |
| Check to see if a given angle lies on this arc.
|
|
bool | isUpwardAtPoint (const CoordinateXY &q) const |
|
Iterator | begin () const |
|
Iterator | end () const |
|
A CircularArc is a reference to three points that define a circular arc. It provides for the lazy calculation of various arc properties such as the center, radius, and orientation
double geos::geom::CircularArc::getAngle |
( |
| ) |
const |
|
inline |
Return the inner angle of the sector associated with this arc.
Even Rouault: potential optimization?: using crossproduct(p0 - center, p2 - center) = radius * radius * sin(angle) could yield the result by just doing a single asin(), instead of 2 atan2() actually one should also likely compute dotproduct(p0 - center, p2 - center) = radius * radius * cos(angle), and thus angle = atan2(crossproduct(p0 - center, p2 - center) , dotproduct(p0 - center, p2 - center) )